Reduction of plasma triglycerides in apolipoprotein C-II transgenic mice overexpressing lipoprotein lipase in muscle.
نویسندگان
چکیده
LPL and its specific physiological activator, apolipoprotein C-II (apoC-II), regulate the hydrolysis of triglycerides (TGs) from circulating TG-rich lipoproteins. Previously, we developed a skeletal muscle-specific LPL transgenic mouse that had lower plasma TG levels. ApoC-II transgenic mice develop hypertriglyceridemia attributed to delayed clearance. To investigate whether overexpression of LPL could correct this apoC-II-induced hypertriglyceridemia, mice with overexpression of human apoC-II (CII) were cross-bred with mice with two levels of muscle-specific human LPL overexpression (LPL-L or LPL-H). Plasma TG levels were 319 +/- 39 mg/dl in CII mice and 39 +/- 5 mg/dl in wild-type mice. Compared with CII mice, apoC-II transgenic mice with the higher level of LPL overexpression (CIILPL-H) had a 50% reduction in plasma TG levels (P = 0.013). Heart LPL activity was reduced by approximately 30% in mice with the human apoC-II transgene, which accompanied a more modest 10% decrease in total LPL protein. Overexpression of human LPL in skeletal muscle resulted in dose-dependent reduction of plasma TGs in apoC-II transgenic mice. Along with plasma apoC-II concentrations, heart and skeletal muscle LPL activities were predictors of plasma TGs. These data suggest that mice with the human apoC-II transgene may have alterations in the expression/activity of endogenous LPL in the heart. Furthermore, the decrease of LPL activity in the heart, along with the inhibitory effects of excess apoC-II, may contribute to the hypertriglyceridemia observed in apoC-II transgenic mice.
منابع مشابه
Overexpression of apoC-I in apoE-null mice: severe hypertriglyceridemia due to inhibition of hepatic lipase.
Apolipoprotein C-I (apoC-I) has been proposed to act primarily via interference with apoE-mediated lipoprotein uptake. To define actions of apoC-I that are independent of apoE, we crossed a moderately overexpressing human apoC-I transgenic, which possesses a minimal phenotype in the WT background, with the apoE-null mouse. Surprisingly, apoE-null/C-I mice showed much more severe hyperlipidemia ...
متن کاملDecreased triglyceride-rich lipoproteins in transgenic skinny mice overexpressing leptin.
Leptin is an adipocyte-derived circulating satiety factor with a variety of biological effects. Evidence has accumulated suggesting that leptin may modulate glucose and lipid metabolism. In the present study, we examined lipid metabolism in transgenic skinny mice with elevated plasma leptin concentrations. The plasma concentrations of triglycerides and free fatty acids in transgenic skinny mice...
متن کاملOverexpression and accumulation of apolipoprotein E as a cause of hypertriglyceridemia.
The molecular mechanisms of hypertriglyceridemia (HTG), a common lipid metabolic disorder in humans, often of genetic origin, are not well understood. In studying the effect of apolipoprotein (apo) E on the metabolism of triglyceride-rich lipoproteins, we found that expressing high plasma levels of human apoE3 in transgenic mice lacking endogenous mouse apoE caused HTG. These transgenic animals...
متن کاملStudies with apolipoprotein A-II transgenic mice indicate a role for HDLs in adiposity and insulin resistance.
Apolipoprotein A-II (apoA-II) is the second most abundant protein in HDLs. Genetic studies in humans have provided evidence of linkage of the apoA-II gene locus to plasma free fatty acid (FFA) levels and to type 2 diabetes, and transgenic mice overexpressing mouse apoA-II have elevated levels of both FFA and triglycerides. We now show that apoA-II promotes insulin resistance and has diverse eff...
متن کاملHuman apolipoprotein A-II associates with triglyceride-rich lipoproteins in plasma and impairs their catabolism.
Postprandial hypertriglyceridemia and low plasma HDL levels, which are principal features of the metabolic syndrome, are displayed by transgenic mice expressing human apolipoprotein A-II (hapoA-II). In these mice, hypertriglyceridemia results from the inhibition of lipoprotein lipase and hepatic lipase activities by hapoA-II carried on VLDL. This study aimed to determine whether the association...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of lipid research
دوره 48 1 شماره
صفحات -
تاریخ انتشار 2007